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For bipyramidal trigonal (TB) EL5 D3,, and pentagonal (PB) EL7 DSh complexes (E  is a transition metal M or main-group 
element A) two problems have been considered: (1)  the relative strengths of axial (ax) and equatorial (eq) bonds and (2) 
the site preferences (SP) of stronger donor (or acceptor) substituents L’. An analytical approach has been developed in 
the framework of canonical LCAO MO theory. Ratios of overlap populations T = N,/NaX were estimated for ns, np, 
and (n - l )d  contributions prodwin8 values of 1 < FS), 1 < FP) < 1.15, = 1.5, and Fd*) = 0.3 for T B  complexes 
and fl) < 1,O.g < FP) < 1, and fid 44) 1.2 for PB complexes. The contributions all reinforce to make equatorial bonds 
relatively stronger than axial bonds, eq > ax, in AL5 and ML5 (do-d4) complexes while the pd8) contribution dominates 
in ML5 (d’) complexes to make ax 2 eq. The perturbing influence of ( n  - l )dlo shells in AL5 complexes was also examined 
and found capable of making ax > eq under certain conditions. The opposing contributions of s, p, and d in ML7 (do-d4) 
complexes equalize axial and equatorial bonds while s and p contributions predominate in AL, complexes resulting in ax 
> eq. SP for substituents were examined using perturbation theory with the finding that a stronger donor ligand will substitute 
equatorially in ALS and ML5 (do-d4) complexes and axially in MLS (d8) and AL, complexes. Quantitative details must 
be considered in ML5 (d’O) and M L 7  (do-d4) cases. The relationship between bond energy and bond polarity criteria for 
SP (equivalent in some instances) was examined for all cases. The results obtained agree with the available experimental 
and computational data and permit a number of predictions to be made. 

Introduction 
By tradition most studies on the electronic and geometric 

structures of coordination compounds are devoted to the square 
or tetrahedral EL4 and octahedral EL, complexes (E is a 
transition metal M or a main-group element atom A). In these 
polyhedra with very high symmetry all the ligands are geo- 
metrically equivalent, permitting symmetry arguments to be 
used most effectively. That, in turn, makes reliable many 
results obtained from a variety of approximate models. In 
particular, the theory of the mutual influence of ligands (MIL) 
has been developed only for square and octahedral complexes 
where all valence angles are equal to 90 or 180’ reducing the 
MIL to the trans-cis 

In recent years one can observe the sharply increasing 
interest in EL5 and EL7 polyhedra where all ligand positions 
can not be equivalent. Most effort has been directed to the 
problem of the relative stability of different possible polyhedra 

for a given composition EL, and the barriers to their inter- 
conversion.“18 The present work will not address this problem 
but consider only bipyramidal structures, trigonal (TB) EL5 
and pentagonal (PB) EL7. The difference between axial, 
E-La,, and equatorial, E-L,, bonds generates three specific 
problems of structure for these compounds (as compared with 
square and octahedral ones): (1) the relative strengths of the 
E-La, and E-L, bonds in unsubstituted complexes EL,; (2) 
the site preference of a given substituent L’ for an axial or 
equatorial position under substitution EL, - EL,-,L’; (3) 
differences in the influence of the ligand L’, in a substituted 
EL,-lL’ complex, on the strength of the initial axial and 
equatorial bonds. 

Sufficient experimental data exist for a discussion of some 
fundamental regularities in the structure of these complexes, 
especially EL5. Moreover, quantitative quantum chemical 
calculations have been performed on specific EL5839,15-18 and 
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Table I. Orbital Basis Functions Forming u Bonds in Bipyramidal EL, Complexes 
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irreducible 
complex representation AO’s of E group ligand orbitals 

A , ’  

A,“ 

A1 g 
E, 

TlU 

AI ’ 

A,” 

El ’ 

E’ 

PY 
2n 4n 6n 

5 5 
(2/5)’/’ (u4 sin 3 t u5 sin - + u6 sin - + u, sin - 

4n 8n 12n 
(2/5)’/’(u, + u4 cos - + u5 cos - t u6 cos - + u, cos - 

5 5 5 5 

4n 8n 12n + u5 sin - t u6 sin - + U, sin - 
5 5 5 dxy 

These explicit expressions can be obtained from the relevant general relationships: (17) for r = 3.h 18) for r = 3.h (1 1) or (14) 
(16) for r = 2 (the equatorial axis in a square).h (h See explanations in the text. for r = 4.h e (12) or (15) for r = 4.h ?(16) for r = 4 . h  

EL710919 complexes which permit explanation of regularities, 
such as the site preferences for donor (acceptor) substituents 
in TB AL?O or the influence of the metal d” configuration on 
relative bond strengths of axial and equatorial bonds in TB 
ML,.9 Some regularities have been rationalized in the 
frameworks of other approaches, in particular the VSEPR 
models: Bartell’s “primary-secondary effects” approach,” the 
angular overlap model,12 and the M O  Walsh-type ap- 
proach.13J4 But, to our knowledge, there is no formalism 
embracing all of these problems explicitly in the framework 
of the LCAO M O  theory, the most general language for 
describing electronic effects in chemical compounds. 
Formulation of the Objective 

The purpose of the present work is to develop such a general 
M O  approach. Most of the problems of axial and equatorial 
nonequivalency will be considered as manifestations of the 
MIL in bipyramidal polyhedra EL, for m = 5 (TB, D3J and 
m = 7 (PB, D5h) with the octahedron, m = 6 (oh), entering 
as the particular case when axial and equatorial positions are 
equivalent. In this sense we continue our earlier work on the 
MIL in square EL4 and octahedral EL6 complexes21,22 where 
we found that some regularities for main-group element AL, 
complexes may be both similar to and different from those for 
transition-metal ML, c ~ m p l e x e s . ~ ~ * ~ ~ * ~  Needless to say, any 
model is formulated in relatively simple terms and one must 
accept some drastic approximations to obtain explicit inter- 
relations among the parameters. At the same time quantitative 
computations may be based on a quite different, often much 
more sophisticated mathematical formalism taking into ac- 
count many factors which have been neglected in the model 
or introduced in a nonexplicit form. Therefore, comparison 
of computational results with those from the model is usually 
not a trivial procedure and rather often these two groups of 
results should be compared with experimental data quite 
independently. 

Due to computational difficulties, most calculations have 
been on simple systems such as PH5 or PF5 which have been 
calculated many times and by many methods including the 
ab initio (PH5,15 PF518), CND0/2 (PF517a), GIVNAP and 

ARCANA (PH5,17b PF517b), and EHM (PH5,8 PF516) methods. 
Calculations on other complexes are rare and have been usually 
performed by means of simple semiempirical methods, es- 
pecially of the EHM type (for example, PC15,16a AsF5,17 or 
IF719), so that the ab initio calculations like those on VF, and 
VF5-43a are really unique. 

The most interesting thing for a chemist is to predict 
regularities along the series EL, when we replace either E or 
L, for instance, in the horizontal series from CdC153- to SbC15, 
in the vertical series from PF5 to BiF5, or along the series PF,, 
P(OPh)S, PCl,, PPh5, etc. At present reliable calculations on 
entire series like these are impossible, so that any prediction, 
based on even very accurate calculations on the simplest 
compounds of the PH5 or PF, type, is an extrapolation without 
well boundary conditions. In a situation like this the model 
predictions may not only be more “digestible” for a chemist 
but more informative as well. The model has advantages in 
that it can focus on the essential features and probe their 
importance one by one. 

The present work will consider the first two problems 
mentioned above for EL5 and EL7 complexes, namely, the 
relative strength of axial and equatorial bonds and the site 
preferences for a more donor (acceptor) substituent. The third 
problem, the MIL in substituted complexes ELm-kL’k, will be 
considered in a subsequent paper.24 
Results and Discussion 

1. Composition and Energies of the Group Ligand Orbitals. 
Let us consider polyhedra EL, where there are two axial 
ligands (1 and 2 )  on the z axis and r equatorial ligands (3, 
4, ... r + 2) occupy vertices of a regular r polygon in the xy 
plane, the ligand 3 being on the x axis (Figure 1). Now 
compare the orbital basis sets forming u bonds in these bi- 
pyramidal complexes (Table I). In the EL6 0, case s, p, and 
d orbitals belong to different irreducible representations. Only 
then is there no mixing of the central atom orbitals in the 
relevant canonical MO’s of the EL,,, complexes making the 
s, p, and d contributions to the relative strength of axial and 
equatorial bonds independent of each other, each axial con- 
tribution being equal to the corresponding equatorial one. In 
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Figure 1. General scheme for bipyramidal complexes EL, (i) and 
enumeration of ligands in TB EL5 (ii), Uh EL6 (iii), and PB EL, (iv). 
In the case (i) the coordinate axes and the valence angles are shown 
as well. 

the D3h EL5 and DSh EL, cases the s, p, and d contributions 
to the axial bond strength are unequal to the equatorial ones 
and must be considered separately. I t  is necessary also to take 
into account sdz2 mixing in both ML5 D3h and ML7 D5h as well 
as pxdx~,,2 (p,d,) mixing in ML5 D3h complexes, though 
certainly we can neglect these mixings in main group element 
complexes AL, for which the hypervalent structurez5 without 
vacant nd orbitals is usually a rather good approximation.z6 

Let us begin with sdz2 mixing. Table I lists four orbitals 
(s, dZ2, uax, and ueq) within the totally symmetric irreducible 
representation AI where 

and 
1 

uq = ((73 +a, + ... + u,+2) 
(r(1 + 2S,4 + . . . ) )1 /2  

are reduced to the usual forms (see Table I) 

(3) 

and 
1 

r’/2 
ueq = -(u3 + u4 + .., + ur+J (4) 

if we neglect all the overlap integrals S, = (uJu,), i # j .  
The fourth-order secular equation can be reduced by using 

linear combinations of uax and uq (eq 5 and 6), where pl and 

PI = C l l g a x  + ~ l ~ u e q  ( 5 )  

4% = C210ax - C ~ ~ f f e q  (6) 

cpz are orthogonal to each other, p1 is orthogonal to d,2, and 
pz is orthogonal to s, i.e. 

((PlIVZ) = 0 (7) 

(cplld2) = 0 (8) 

(cpzls) = 0 (9) 

c11 = c22, c12 = czl, cl12 + c12= 1 for S,  = o ( i  + j )  (10) 

Though strict fulfillment of both conditions 8 and 9 is possible 
only in the EL6 Oh case (where s and dZ2 belong to different 
irreducible representations), for the EL5 and EL, cases these 
two orthogonalization schemes give us a possibility of esti- 
mating separately the s and dZ2 contributions to the relative 
bond strength (see below). 

The s contribution will be entirely isotropic if we neglect 
interligand interactions. In fact, neglecting all the overlap 
integrals S,] ( i  # j ) ,  we have for condition 9 the mutually 
orthogonal group orbitals (1 1) and (12). Because of the form 

$91 = ( r + 2  -qcr1 + u2 + ... + ur+J (11) 

of (1 1) the s contribution to the strength of all the bonds-both 
axial and equatorial-is the same. So the only way to take 
into account the real anisotropy of the s contribution is to 
include somehow interligand interactions (see below). 

If we use the second orthogonalization scheme (8) and take 
into account [cf. (loo)] 

we obtain mutually orthogonal group orbitals (14) and (15). 

p i  = ( r + 8  qz(gl + uz) - 

I t  is obvious that cpl (1 1) coincides with cpl’ (14) and cpz (12) 
with cp; (15) Only in the EL6 o h  case where r = 4 (see Table 
1) * 

The forms of relevant equatorial ligand MO’s pk depend 
upon whether or not there is a ligand trans to ligand 3. Letting 
6 = w ,  2w, ..., where w = 27 / r  stands for the valence angle 
between ligands 3 and 4 (see Figure 1 and Table I), we have 
the following: 

(a) For a nondegenerate level when there exists a trans 
position 

‘pk = (1/r)’I2(u3 + u4el8 + usezt8 + ... + ur+ze(rl)ro) (16) 

(b) For a doubly degenerate level where there is no trans 
position, but there are pairs of equivalent “quasi-cis” ligands 

u5 cos 28 + ... + ur+2 cos ( r  - l)6) (17) 
pk(’) = (2/r)1’2(a3 + 04 cos 6 + 

The second MO pk(’) will be, obviously, 

( p k ( 2 )  = (2/r)1/z(u4 sin 6 + 
u5 sin 26 +... + a,+z sin ( r  - l)6) (18) 

There is a clear analogy in the forms of MO’s (16)-(18) 
and the Hiickel T MO’s of cyclic polyenes C,H, where the 
forms of T MO’s depend on whether the number r is even or 

Further, one should emphasize that by symmetry the 
equatorial px,py orbitals interact with the group ligand orbitals 
corresponding to 6 = w while the equatorial dx2~y2,dxy orbitals 
interact with the group ligand orbitals corresponding to 0 = 
2w. Only in D3, (TB), where w = 2~ - 2w, cos w = cos 2w 
= cos 4w, and sin w = -sin 2w = sin 4w, do the two sets of 
orbitals belong to the same irreducible representation, e’. 

Though neglecting Slj (i # j ) ,  we shall not neglect resonance 
integrals pij = (allflu,), i # 6,  so that the energies of the 
different group ligand orbitals (1 1)-( 12) and (14)-( 18) will 
be different. The significance of such energy splittings is 
demonstrated in the photoelectron spectrum of SF, where the 
energy splittings a, -tl, and alg-eg between the relevant group 
F 2s orbitals have teen  found to be equal to 2.7 and 4.9 eV, 
respectively.28 
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Figure 2. Relative energies of the group ligand u orbitals in EL5 (fJ3h), 
ELs (oh), and EL, (D5*) complexes. For the al  MOs two cases are 
shown: (i) for the s orthogonalization and (ii) for the d,2 orthogo- 
nalization. In the EL7 complexes for the case (i) the energies of the 
MOs az’/ and 2al’ may be interchangeable; for the case (ii) the energy 
of 2al’ may be higher or lower than aL. The dotted lines connect 
orbitals of the same type. See the text for designations of the MO’s. 

The energies of the MO’s (1 1)-( 12) and (14)-( 18) are as 
follows (OIL = a): 

a(lal’) = a + )/5(12PCls + 6P, + 2P1,) 

4 h ’ )  = a + 3/31(24PciS + 16P, + 3PtJ 

EL5 D3h 

[the (11) type1 (19) 

[the (14) type1 (20) 

[the (12) type1 (21) 

[the ( 1  5 )  type1 (22) 

(23) 

(24) 

(25) 

(26) 

(27) 

a(2al’) = a - f/s(12Pcls - 4Peq - 3PtJ 

a(2al’) = a - YlI(24Pcis - 6Peq - 8PtJ 

a(a?) = cy - Pt, 
a(e’) = a - Peq 

4a ig>  = a + 4Pc1s + PI r  

4tlU) = cy - PI, 

.(e,) = a - 2PClS + PI, 

EL6 Dh 

EL7 D5h 

a(lal’)  = a + j/7(10@eq(o) + 10fle,(20) + 
20PClS + 2PtJ [the ( 1  1) type1 (28) 

a(lal’) = a + f/13(16@eq(0) + 16P eq (2w)  + 
4OPcIs + S P t J  Ithe (14) type1 (29) 

a(2al’) = cy + Y7(4p,(4 + 4P eq ( 2 w )  - 
20Pcls + W t J  [the (12) type1 (30) 

a(2al’) = a + 1/13(10Peq(w) + - 

[the (15) type1 (31) 

(32) 

40Pc1s + 8PtJ 

a(a/)  = a - Pt, 
a(el’) = a + 0.618Pe,(“) - 1.618Pe,(2“) (33) 

cy(ei) = a - 1.618Peq(w) + 0.618Peq(2”) (34) 

for the relevant internuclear distances R12 = 2R, R13 = 1.41R, 
Ru = 1.73R (EL5) or 1.17R (EL7), and R35 = 1.90R (EL7) 
if all the bond lengths E-L are equal to R (see Figure 1 ) .  

Here Pax = P t r  = P12, PCIS = P13, Peq(w) = P349 and Peq(2w) = 8 3 5  
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To estimate the relative energies of these MO’s we should 
take into account the short-range character of Pij interactions 
(cf. Appendix, Table VI), namely 

for ELs and EL6 IPcisl >> IPeql > lPtrl (35) 

and 

for EL7 IPq(o)l >> lPclsl >> IPeq(2w)I > IPtrI (36) 

For example, estimating PEis and Ptr for group ligand F 2s 
orbitals of the type (25)-(27) from the experimental data for 
SF628 we obtain &is = -1.0 eV and Pt, = 0. 

All this easily defines the relative order of the MO’s cy(la,’), 
a(2al’), a ( a F ) ,  a(el’), and Ly(ei) which is shown in Figure 
2. 

The fine point is the relative order of the al’ MO’s obtained 
by the s and dzz orthogonalizations, i.e., (19) vs. (20) and (28) 
vs. (29). As the dominant Pij value is Pcis for ELS and &(w) 

for EL7, we have to compare the magnitudes of the coefficients 
[see ( l l ) ,  (12) and (14), (15)] in (37) and (38), which is 

L I -<- for ELS (P =3) 
r + 8  r + 2  

1 
L <I 

r + 8 
for EL7 ( r  = 5) 

r(r + 8) 

(37) 

reflected in the coefficients in the MO’s (19)-(20) and 
(28)-(31). We can see that, in both the EL5 and EL7 cases, 
the orthogonalization to dZz (8) increases the lal’ energy and 
decreases the 2al’ energy, thus decreasing the energy splitting 
a(2al’)-a(lal’) [see Figure 21. 

2. Structure of u MO’s of EL, Complexes. The MO 
energies (19)-(34) are necessary to estimate the strengths of 
the relevant E-L bonds. Remember that if we have any 
bonding MO 

$ = caxa + CbXb 

$* = CbXa - CaXb 

(39) 

(40) 
there exist the following relations between the energy E($) and 
the coefficients Ca and c b 2 9  

and its antibonding counterpart (Sab = 0, c: + c: = 1) 

where 

and 

So, the product cacb (43) [the bond order] monotonically 
decreases as the parameter { (45) increases, Le., as the energy 
difference between interacting levels increases and the res- 
onance (overlap) integral between them decreases (in absolute 
value). 

We shall now consider interactions among the central atom 
s, p, and d orbitals and the group ligand orbitals for the 
following bonding u MO’s of bipyramidal complexes EL,+2. 

(uI + 6 2  + ... + u,+’) (46) 
b 

(r  + 2)Il2 
$(s) = as + 

or 
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type, IF7, has been reliably identifiedS3’ The latter is easily 
understood, as the hypervalent central atom A using only ns 
and np orbitals can hardly hold seven ligands.25 

3. Relative Strengths of Axial and Equatorial Bonds. As 
a criterion of the E-L bond strength, we choose the overlap 
population32 

(53) 
w 

N’( E-L) = 4 C  ~ C ~ , C ~ L S ~ L  
i m  

or 
occ 

N(E-L) = )‘&’(E-L) = CCC~~C~LS~L (54) 
i m  

Mere cim and ciL stand for coefficients in the canonical CT M O  
+i 

+i = C C i m X m  + CciLcL ( 5 5 )  
m L 

referring to a given irreducible representation, the xm are AOs 
on the central atom E, and SmL = (x,,(uL). 

In cases when, within a given irreducible representation, the 
number of unoccupied MO’s qj is less than that of occupied 
MO’s +i ,  it is more convenient to use the right part of the 
identity (see below) 

OCC unocc 

i i 
CCimCiL  = - C CjmCjL (56) 

We shall consider separately the s, p, and d contributions 
to the strengths of E-Lax and E-L,, bonds. We shall begin 
with the p contribution because it is of greatest importance 
in hypervalent complexes AL, and ties in directly with the 
previous discussion of the energy splitting of the ligand group 
orbitals. 

(a) The p Contribution. In all the complexes ELm the p 
orbital contribution to the overlap populations are [cf. (48)] 

Nq(P) = ef(2/r)1/2Sp, (57) 

N,,(P) = cd(Y2) 1/2Spo (58) 

and [cf. (47)] 

In the 0, case 2Jr = ] I 2 ,  so axial and equatorial bonds are 
equivalent and the MO’s e’(x), e’(y), and a2/’(z) are degen- 
erate. The ratio l i p )  of these overlap populations may be 
written as in (59), which identically equals 1 in the EL6 Oh 

(47) 

+(PJ = ep, + 
f( : )1 ’2 [~3  + u4 cos w + ... + C T ~ + ~  cos ( r  - l)w] (48) 

( - q 2 ( q  r ( r  + 2) 
+ ff4 + ..* + “ r + 2 ) ]  (49) 

or 

(‘T3 + ff4 + ... + ‘T ,+2) ]  (49’) 

$(dx2~y2) = ld,2~~2 f m ( ;)1’2[CT3 + u‘$ cos 2w + ... + 
ur+2 cos 2(r - l ) ~ ]  (50) 

Here (46), (46’) and (49), (49’) refer to ( l l ) ,  (14) and (12), 
(15), respectively; for (48) and (50) there exist the relevant 
counterparts of these doubly degenerate sets [+(py) and +(dxy), 
respectively]; and for all these M O s  (46)-(50) we accept the 
relations (39)-(45). As the A O s  d,, and dyz are not involved 
in the formation of u bonds in any bipyramidal complex EL,, 
the results obtained below will be the same for do-d4 ML, 
cases. 

The only serious deviation from this M O  scheme (46)-(50) 
arises in the TB D3* ML5 case where some distinct pxd,z- 2 

(p,d,) mixing can exist. So, instead offour MO’s +(p,$, 
$*(p,), $(dx2-p), $*(d,2~~~) [(48) and (50) and their anti- 
bonding counterparts], we have three MO’s of the type 
+,(Px*dx2-y2) = CZ’P, + gl’dX2-yZ + 

ht’( 5)1’2(cr3 - Y2u4- 1/g5)  (51.i) 

where the coefficients c,’, g,’, h,’ (i = 1, 2, 3) are defined by 
some variation procedure. For the d0-d4 ML, or AL5 cases, 
only MO qI(px, d+2) (51.1) will be filled. Because the major 
contribution to bonding is provided by the (n - l)d orbitals 
in transition-metal complexes or the np orbitals in main-group 
complexes, we can replace $l(px, dG-y2) (51.1) by +(d2-y2) (50) 
in ML5 and by $(p,) (48) in AL5 (see below). In the dS-d” 
ML5 cases we have to fill +2(px, dX292) (51.2) also, SO the 
population q2 of the ligand group orbital e’ 

9 2  = h1’2 + h2/2 = 1 - h3’2 ( 5 2 )  
will be less than 1 and the magnitude of h i 2  = 1 - q2 > 0 may 
be of importance for a number of consequences (see below). 

The TB EL5 D3h complexes are very common for both 
main-group elements A and transition-metal atoms M.  The 
D3h do-d1 ML, complexes exist only in the gas phase.30 In the 
solid state the do-di ML, complexes dimerize or polymerize 
to reach hexa (or higher) coordination around the central atom, 
so TB dX ML5 D3,, complexes are more common for 7 I x I 
10 (see references in ref 9). 

The PB EL7 D5h complexes are most typical of (n - 1) d o d 4  
transition metalsi0 and only one nontransition complex of this 

(59) 

case (ef 
and EL7 cases. 

cd, r = 4) but requires some analysis for the EL, 

Using (44), (47), and (48), we find 

112 
> 1 for TB ( I“  = 3) 
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= 1 for Oh ( r  = 4 )  (65 )  
< 1 for PB ( r  = 5 )  ( 6 6 )  

where pp0 = ( p z l ~ u l )  = ( p x l ~ u 3 ) .  Letting ap - ai(P) = Aai(P) 
and introducing the parameter 

yi = Aa,’*)/p,, (67 )  
we have 

or 

From the energies (20),  (24)  and (32),  (33) and the relations 
( 6 4 ) ,  (66 )  we have 
for TB (aax(p)I > (aq(p)I, ap - aax(p) > ap - ae9(p) (70 )  

IPax‘p’I > IPeq(p)I (71 )  

IPax(P)I < IPeq(p)I (73 )  

for PB laax(P)l < Iaq(P)J, ap - cyax(!’) < ap - aeq(p)  (72 )  

So there is a tendency for fa, and skg to be approximately equal 
to each other, and therefore for qualitative estimates (see 
Section 4 and especially the subsequent paper24) we shall use 
the relations 

c x  e,  d = f, cd = ef (74 )  

Iaax(P) - C Y p I  << lap - aLl ( 7 5 )  

l a x  < l eq  for TB (76 )  

l a x  > l e q  for PB (77 )  

But in principle lax # rq and as we usually have 

the typical relations will be 

By the way, using the expressions (41) and (42) and (62 )  and 
(63 ) ,  we can predict that in ALj and AL-, complexes the 
bonding (filled) M O s  a; and e’ must be very close in energy 
and even interchangeable. Actually, in the ab initio calcu- 
lations on PH5ISasb the MO e’ lies slightly lower than the MO 
a c ,  but the two are inverted in the EHM calculations on PHs,8 
the energy difference being 0.4-0.7 eV. The same inversion 
with the same energy difference takes place for the ab initio18 
and EHM” calculations on PF5. Moreover, in the same 
multi-STO-Huckel calculations on PF, and PC1s33 e’ lies 0.1 
eV lower than a; in PF5 but 0.6 eV higher in PCls. According 
to the EHM calculations, el’ lies 0.5 eV lower than a; in IF7.19 
In the PE spectra of PFj and PC15,33 the only experimental 
results available, the energies of a;’ and e’ are not distin- 
guishable. 

If we neglect the difference aax(P) - aqQ(P) as compared with 
ap - alL, Le., we accept34 

AaaX(P) = Aaeq(P) = A d )  = (ap - aL( 

Yax = Yeq = Y 

(75’) 

( 7 8 )  
we immediately obtain 

1 
2 y 2 / 4  + 4 

cd = ( ( 7 9 )  
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cd > ef, c > e, d < f for TB (81) 

cd < ef,  c < e, d > f for PB ( 8 2 )  

for TB ( r  = 3 )  ( 8 3 )  

= 1 for 0, (r = 4) (84) 

= ( 1  - &y2 for PB ( r  = 5 )  (85) 

As y2 > 0, we have [cf. (81), (82 ) ,  and (59 ) ]  the following 
main inequalities: 

1 < f l p )  < ( 4 / 3 ) ’ / 2  = 1.15 for TB (86 )  

0.89 = (YS)’l2 < T(p) < 1 for PB ( 8 7 )  
Thus, the p-orbital contribution will cause the relative 
strengthening of equatorial bonds in the TB case and axial 
bonds in the PB case in the ranges defined by the inequalities 
(86 )  and (87) .34  

It is obvious from the structure of y (67 )  and the relations 
(83) and ( 8 5 )  that this inequivalence of axial and equatorial 
bonds will rapidly disappear with an increase in Aa(P) ( 7 5 9 ,  
Le., an increase in the electronegativity difference of the central 
atom and ligand. We can expect the equalization of all E-L 
bonds, i.e., the decrease of the relevant ratios ARIR, along 
the series SbC15 > SnCL- > (InC152-) > CdClS3- or PPh5 > 
PC15 > P(OPh)j > PF, in agreement with experiment (Table 
11). We shall discuss them in more detail after consideration 
of the s contribution to relative bond strengths. 

(b) The s Contribution. In order to estimate the s con- 
tribution we can first neglect sd,z mixing, especially for hy- 
pervalent AL, complexes. An accurate solution of the relevant 
secular equation for the Al  representation would produce the 
MO’s in (88), where k = 1, 2,  and 3 and the normalizing 

$k(kal’) = ak’s + -(al + o2 + ... + u , + ~ )  + bL 
Nh 

coefficients ak’, bk’, ck‘, Nb, Nc,ax, and Nc.m are defined by some 
variational procedure. Depending on-the sign of the sum P 
[cf. (5611 

P = alfclf  + a2/c2/ = -a3/c3’ (89 )  
the axial bonds will be stabilized if P > 0 or destabilized if 
P < 0 (all the products ak’bk’give an isotropic contribution). 

We shall simulate the structure of $k(kal’) [88] by per- 
turbing the initial set 

(a1 + ~2 + ... + ~ , + 2 )  (46) 
b 

( r  + 2) ‘ /*  
ql(1alf)  = as + 

a 
( r  + 2)’/2 

$3(3al’)  = bs - ( U I  + ~2 + ... + ur+2) (90)  

the set corresponding to the isotropic s contribution which was 
obtained by neglecting all the overlap integrals Si = ( ui(oj ) ,  
i # j ,  in the interaction of the s orbital with the ligand group 
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= 0 

where a and b are taken from (46) and (so), E23 is the exciting 
energy from the MO $2 (12) to $3 (90), and 

= 2pcis + bt r  - P t r  - 2Pcis for EL6 Oh (93) 

= 3P,i, ptr - 2pe,(w) - 2p,,(zw) for EL-, D5h (94) 

ln  the EL6 Oh case we obtain the trivial result H I 2  E 0. In 
other cases the sign of H I 2  depends, in principle, on the 
magnitudes of pip But, as we have already said, Pcis dominates 
in EL5 while does in EL7. Thus H12 < 0 in the TB 
complexes, but H12 > 0 in the PB ones. This conclusion is 
confirmed by numerical estimations of H12 if we approximate 
pij  as Pij = -(constJRij” (see Appendix, Table VI). As r ,  ab, 
and E23 are positive, the sign of P coincides with the sign of 
H12. We are led to the conclusion that the s contribution will 
cause the axial bonds to be relatively weakened in the EL5 case 
but strengthened in the EL7 case. Therefore the ratios T(’) 
will be 

N (S) 

> 1 for T B  EL5 (92’) PSI = eq 
Nax(S) 

1 for Oh EL6 (93’) 
< 1 for PB EL7 (94’) 

which qualitatively are the same as for the p contribution [cf. 
(83)-(87)1. 

It is easy to show that the MO’s &’(2a,’) obtained from 

[here E 1 2  > 0 is the excitation energy from the MO (46) to 
the MO (12)]. Thus the nodal structures of $(2al’) will be 

(97) 

(98) 

$(2al’) = s - uax + ueq for TB EL5 

$(2al’) = s + u,, - ueq for PB EL-, 
but 

which is confirmed by the results of quantitative calculations 
on AL58915,18 and 

The perturbation approach may be applied to nny three- 
orbital, four-electron case,23 in particular, to the analysis of 
the MO’s in any three-atom molecules or fragments L’-E-L 

*I 
$ 1  *I 

A AL, L, A AL, L, A AL, L, 

( i )  ( i  i) ( i i i )  

Figure 3. Energy splitting of the a,’ MO’s in the TB AL5 complexes. 
It is shown why EZ3 decreases as the difference in energy as - aL 
decreases. The cases (i), (ii), and (iii) correspond to typical situations 
in HgClS3-, PFS, and PCI5, respectively. See the text for designations 
of the MO’s. 

where every atom has one valence orbital (of u or T type). By 
definition the first MO has no nodes and thus is entirely 
bonding 

$1 = XE + XL’ + XL 

while the second MO must have one node. However, the 
problem is where this node is located, in the E-L’ or E-L 
region, which correspond respectively to the MO’s 

$‘2(’) = XE - XL’ + XL (97’) 

$2(2) = XE + XL’ - XL (98’) 

This nodal distribution determines the relative strength of the 
E-L’ and E-L bonds and is one of the decisive factors in the 
theory of the mutual influence of ligands.2’,22 The perturbation 
apptoach permits the nodal distribution (97’) and (98’) to be 
found quite reliably.23 It is of importance because until now 
the relationships like (97) and (98) have not been explained 
qualitatively in an unequivocal way. For example, it is 
tempting to explain the energetic preference of the nodal 
structure (97) over (98) in TB AL5 complexes by the fact that 
(97) corresponds to three bonding (equatorial) vs. two anti- 
bonding (axial) interactions. However, from (12) 

I . I  

(99) 

so that in the AL5 case ~ c a , / c e q ~  = 3 / 2  [cf. Appendix, (142)] 
which exactly compensates the above ratio of the numbers of 
bonding and antibonding interactions. The main weakness of 
the above argument is that it would lead to the incorrect 
conclusion that the same nodal structure (97) occurs in the 
PB AL7 case. 

The usefulness of the relation (91) is that it permits the 
relative changes in the s overlap populations and s characters 
of A-Lax and A-Le, bonds to be predicted. The numerical 
value of the parameter ab/Ez3 in (91) will increase as ab 
increases and the energy gap E23 decreases. As seen from 
Figure 3, this gap will be less the lower the energy of the s 
orbital relative to the group ligand orbitals. Though the 
product ab may be changed in a nonmonotonical way while 
the s orbital energy decreased along the series (i)-(ii)-(iii) in 
Figure 3, these changes in ab are insignificant compared with 
changes in E23. 

This consequence of (91) is confirmed by the EHM cal- 
culations on PF, and PC15.16 The employed parameters (ap3, 
= -20.20, aFZp = -20.86, = -15.3 eV) correspond to the 
cases (ii) and (iii) in Figure 3, and the s characters of P-Lax 
and P-Le, bonds have been found to be 19.4 and 20.4% for 
PF5 and 11.7 and 25.5% for PCl,. The drastic increase in the 
P 3s character in equatorial as compared with axial bonds is 
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Table 11. Bond Lengths (A) of Some TB AL, and ML, 
(n - l )d lo  Complexes 

phys R(E- R(E- AR(ax- 
complex state La&" Le&" eq) ARIR,, ref 

PF, g 1.58 1.53 0.04 0.03 a 
P(OPh), c 1.66 1.60 0.06 0.04 b 

PPh , c 1.99 1.85 0.14 0.07 d 
AsF, g 1.71 1.65 0.06 0.03 e 
SbCl, c 2.34 2.29 0.05 0.02 f 
SnC1,- c 2.38 2.36 0.02 0.01 g 

HgCl, 3- c 252 2.64 -0.12 -0.05 i 
a K. W. Hansen and L. S. Bartell, Znorg. Chem., 4, 1775 (1965). 
R. Sarma, F. Ramirez, B. McKeever, J. F. Marecek, and S. Lee, 
.l Am. Chem. Soc., 98, 581 (1976). 
Bartell, J.  Mol. Struct., 8, 23 (1971). P. J. Wheatley, J.  Chem. 
Soc., 2206 (1964). e F. B. Clippard, Jr., and L. S. Bartell, Inorg. 
a e m . ,  9, 805 (1970). S. M. Ohlberg, J.  Am. g e m .  Soc., 81, 
811 (1959). g Reference 35. Reference 36. Reference 37. 

PCI, g 2.12 2.02 0.10 0.05 c 

CdCl, 3- c 2.53 2.56 -0.03 -0.01 h 

W. J. Adams and L. S .  

the main reason for the increase of the total ratio NeS/Nax 
which (without 3d orbitals of the P atom) has been found to 
be 1.08 for PF, and 1.55 for PCl,. 

Finally, the relationship (91) permits the influence of steric 
effects to be included. As P is a function of @!j which rapidly 
decreases (in absolute value) with increasing interligand 
distances, one can expect that, other conditions being equal, 
the relative equatorial strengthening will be larger the smaller 
the bond length R(A-L). 

Qualitative similarity of the s and p contributions permits 
the ARIR,, regularities in AL, complexes to be explained. 
The simplest regularity concerns AL5 complexes when we fix 
an atom A, its s orbital being at the same energy as the a 
orbital of some initial ligand L. In the AL; series where donor 
ability of the ligand L' increases (and bond lengths do not 
change greatly) both s and p contributions to  the relative 
equatorial strengthening will increase monotonically, increasing 
ARIR,,. The series PL, where L = F, OPh, C1, and Ph is just 
such a case (see Table 11). 

If L is fixed as A varies along a group of the periodic table, 
values of ARIR should decrease (by the inverse of the previous 
argument), but possible nonmonotonic changes in the s and 
p contributions may complicate the trend in question. Two 
pairs of complexes PF, and AsF5 and PC15 and SbC15 (see 
Table 11) are good illustrations. In the former case the values 
of ARIR are practically the same; in the latter case the 
decrease of ARlR is quite obvious. 

However complicated the regularities of AR/R prove to be, 
the s and p contributions can result only in a relative weakening 
of axial bonds, though for strong donor central atoms this 
weakening must be very small as, for example, in S r ~ C l y . ~ ~  
Two TB AL, complexes, CdC153-36 and HgC153-,37 are known 
at present where axial bonds are shorter than equatorial ones, 
so we have to look for the source of this reversal. 

In PB AL7 complexes we can predict the relative 
strengthening of axial bonds with similar regularities to the 
TB AL, case (but of opposite sign). Unfortunately, reliable 
structural data are known only for IF7 where indeed the I-Fax 
length is much shorter than the I-F one (AR = -0.072 A3I). 

(c) The d Contribution. (i) TheTn - l)dIo Case. On the 
basis of EHM calculations Hoffmann, Muetterties, et aL9J0 
have done an excellent analysis of relative bond strengths and 
site preferences in transition-metal complexes MLZ and ML7I0 
as a function of dx electronic configuration of the central atom. 
We shall show that our model leads to the same qualitative 
results, but first we want to examine a special subclass of 
complexes, ( n  - l)dIo ML5, which previously9 has been 
considered exactly the same as the AL5 case. As in the 
formally isoelectronic AL, case, to a first approximation, the 
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hypervalent schemez5 can be adopted for ( n  - l)dIo ML5 
complexes with ns and np orbitals responsible for bonding. In 
contrast to AL5, however, the axial bonds are shorter, e.g., AR 
= -0.03 in CdC153-36 and -0.12 A in HgC153-.37 To our 
knowledge, no theoretical model or calculation has explained 
this ~ h o r t e n i n g . ~ ~  As shown above, the s and p contributions 
can lead only to relative strengthening of axial bonds in any 
TB complex, though in the cases of the CdClS3- and HgC1,3- 
this strengthening must be minimal. 

Let us try to estimate the influence of filled ( n  - l)dlo shells. 
In neutral AL, complexes with A belonging to the end groups 
of the periodic table, the central atom has either no (n - l)d 
orbitals at all (Si, P, S, etc.) -or very deeply lying ( n  - l)dIo 
orbitals (As, Sb, Sn, Sb,  et^.).^^ It is another story for the 
beginning group elements, especially for such 2B elements as 
Cd or Hg. For example, the energy difference between 6s and 
5d atomic orbitals in gaseous Hg equals only ca. 5 eV.40 
Certainly this difference will be smaller in anionic complexes 
like HgC153-. 

Let us consider the perturbation interaction of filled (n - 
1)d orbitals of al'(d2,2) and e'(d2X2-y2,d2,) symmetries with the 
relevant MO's $(SI, $*(s) and $(P,), $*(P,) [see (39), (401, 
(46), and (48)]; AE,, I AE, corresponds to the excitation 
energies from ( n  - l)d2,2 to $*(s) and from ( n  - l)d2x2-y2 to 
$*(px), respectively. As we consider only a bonds A-L, all 
the relevant matrix elements should be expressed in terms of 
@do = .-lconstlSd,. This can be performed by using the 
expansions41 (omitting non-a components) of (100) and (101), 

dZ2 = d,,z(cos2 w - v2 sin2 w) + ... (100) 

3112 
d,2~~2 = dZ,2- sin2 w + .,. (101) 2 

where w is the angle between axis z and z' (in the xz plane) 
and the z' axis is the axis of the A-L a bond. 

After the relevant transformations, we obtain, as a first-order 
perturbation, the ( n  - l)dlo orbital contribution to N(A-L,,) 
and N(A-L,) 

(1 02) 
S 2 d c  a2 

AN(A-La,) = Jconstl- - 
10 AE,, 

AN(A-Le,) = Iconst\- s2du( - 15c2 - - $.) (103) 
20 AEeq 

The first (positive) term in (103) is defined by the dZxZ- 2 

contribution. a and c = e (74) are the coefficients from the 
MO's (46) and (48). Since AE,, 5 AE, (see above), we find, 
as a condition for relative axial strengthening, AN(A-La,) > 
AN(A-L,,), that 

contribution and the second (negative) term by the d i z2 

a > 5 I l 2 c  (104) 
Let us emphasize that the inequality (104) reflects the ( n  

- l)dIo contribution to the bond strength via the algebraic 
coefficients of s and p orbitals in the relevant MO of an AL, 
complex. For strongly donor atoms like Cd and Hg where 
valence p orbitals lie rather high (they are even vacant in the 
neutral atom ground state), the condition (104) looks rea- 
sonable?2 For the usual electronegative atoms A, where AEax 
and AE are large, the relative axial strengthening due to the 

(103)] and can not overcome the relative equatorial 
strengthening due to the ns and np contributions. 

So it is worthwhile to distinguish the ( n  - l)dlo ML, cases 
from the ndo AL, cases. We shall include in the former class 
atoms M of the beginning groups of the periodic table (CUI, 
Hg", Cd", etc.) and in the latter class atoms A of the middle 

(n  - l)d "fb contribution must be extremely small [cf. (102) and 
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and end groups (SnV (Sn-), Pv, IV", etc.). 
In the AL7 D5h PB case the contribution of (n  - l)dlo shells 

includes only the ( n  - l)d2,z contribution because (n - 1) 
d2x2_~d2, interact with the filled ligand group orbitals within 
the irreducible representation e2/ (remember that the influence 
of (n  - l)d2,2_y~d2xy orbitals in the AL5 D3h TB case is defined 
by the presence of vacant antibonding orbitals within the e' 
representation to which px, d+,2, py, and d, belong). After 
the relevant transformations we obtain 
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Table 111. Bond Lengths (A) in Some PB AL, 
and ML, Complexes 

phys R(E- R(E- AR(~x-  
complex dX state Lax)av Leq)av eq) ref 

IF7 ndo g 1.78, 1.85, -0.07 Q 

ZrF,3- ( n -  l )do  c 2.00 2.03 -0.03 d 
V(CI\T),,' ( n -  l )d2 c 2.14, 2.14, -0.0 e 

Reference 31. Reference 45. ' Only the mean Re-F dis- 

ReF, ( n -  l )do  g -0.06' b 

tance is given (1.835 k 0.001 A). The uncertainty in the equatori- 
al-axial difference is on the order of 0.02 A. 
J. C. Taylor, A c t a  Crystallogr., Sect. B, 26, 417, 2136 (1970). 
e R. A. Levenson and R. L. R. Towns, Inorg. Chem., 13,  105 
(1974). 

H. J. Hurst and S 2 d o  u2 
ANax = -Iconst/--- - 

14 AE,, 

A N ,  = Iconstl- __ 28 AE,, 
S2da U2 

Le., contrary to the ALS D3h TB case, (n - l)d2,2 will destabilize 
axial bonds and stabilize equatorial ones. Thus the ns, np, and 
( n  - 1)d'O contributions are always of opposite sign. Again, 
for atoms in the last groups of the periodic table, LEax is very 
!arge, so it is not surprising that in IF7 axial bonds prove to 
be distinctly shorter than equatorial ones (as discussed above). 
At the same time we might predict that in anionic complexes 
of the AL7"- type (if such can be made) the (n  - l)dlo con- 
tribution may become remarkable and AR will be smaller in 
absolute value, perhaps changing sign as compared with AR 
in IF7 (cf. SnC15- and HgC153-). 

(ii) The ( n  - l )dx  Case. Now we turn to the ( n  - l )d  
contribution in transition-metal complexes ML5 and ML,. Our 
arguments will be rather similar to those used earlier to es- 
timate the p contribution. The only substantial complication 
is that the dZ2 orbital contributes to both axial and equatorial 
bonds [a fact already used to obtain the relations (102) and 
(103) and (105) and (106)l. Further, we can use two forms 
of MO's including the dZz orbitals, namely (49) or (49'), the 
latter being preferable. Taking into account (16), (49'). (50) ,  
(loo), and (101) and introducing the obvious designations, we 
obtain 

Table IV. x Contribution t o  f i x )  in Complexes EL, 

Im( $)1'2)S'dc for ML5 and ML, (108) 

= ( g h (  &)'" + lm( $ ) 1 ' 2 ) s d o  

for. ML6 Oh ( 1  09) 

for ML5 and ML7 (1 10) 

= j / d + - ( - l h r )  lm 3(r + 8 )  l" = 1  
gh 

(In the Oh case (1 13) becomes (3''*/2)pd,, so that ( r  + 8)'i2/2 

complex T(S)  T(P) f i s+p)a  $d) ref 

TBEL,  D 3 h  >1 1.0-1.15 >1 -1.5 this work 
1.14 1.13 1.13 b 
1.12 1.04 C 

1.06 d 
1.08 e 
1.16 1.79, f 
1.17 g 
1.22 h 
1.23 i 
1.25 i 
1.37" k 
1 . 5 P  1 

PBEL, D,h <1 0.9-1.0 <1 -1.2 this work 
0.73 1.19 f 

The total ratio T(Sfp )  = IV eq (stp)/.Va,(stp). Our EHM 
calculations on some typical AL complex (see Appendix). ' CND0/2  calculation on PF5.I7; Ab initio calculation on 
P F , . ' ~ ~  e EHM calculation on P F , . ' ~ ~  ~ E H M  calculation on 
some typical hIL, and ML, (n  - l)do-d4 complexes.44 g Ab 
initio calculation on P F , . ' * ~  GIVNAP + ARCANA calculation 
on PH,."b ' GIVNAP + ARCANA calculation on PF,."b Ab 
initio calculation on PH,.'sc ' Ab initio calculation on PH,.'ja 

EHM calculation on PC1,.'6a rn This value seems to be too large 
to be typical, not only by comparison with our model upper limit 
fid) < 1.6 (1 18') but  also by comparison with the ab initio calcu- 
lations on VF, (3d0) and VF,- (3d')  where the ratiosN(V-Feq)/ 
N(V-Fax) were found to be 1.06 and 1.12, respectively.43a " This 
mcreased value of T(s+p) reflects an increase of the s contribution 
as compared with that in PF, (see text). 

Table V. Site Preference for a Stronger Donor Substituent L' 
in TB EL, and PB EL, Complexes 

comulex dX site preference 

TI3 EL, D,h AL, ndo equatoriala 
ML, (n  - l)d0-d4 equatorialu 
ML, (n - l )d8 axiala 
ML, (n - 1)d" dependent upon parameter valuesb 

PB EL7 D,h AL, ndo axialb 
ML, (n - l)do-d4 dependent upon parameter valuesb 

This re- 
a The result agrees with the known experimental and compu- 

tational data (see, for instance, ref 8, 9, 15, 16, 18, 20). 
sult is specific t o  the present work (see text). 

= (3r) ' i2/2 for r = 4 which must be by symmetry.) In the 
expression (1 14) the parameters and yes are the d ana- 

logues of the relation (67). Typically for transition-metal 
complexes 
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= 1.56 for TB (r = 3) (115) 

= 1.32 for PB (r  = 5) (116) 

so that 
Im/gh  < 1 (117) 

and, from (1 lo), 
N (4 

eq 
f id )  = - < 1.42 for TB ( r  = 3) (118) 

Na,(d) 

< 1.24 for PB ( r  = 5) (119) 

Using (49) instead of (49’) leads, in the same way, to 

and 
N (d) 

eq 
f l d )  = - < 1.62 for TB (I = 3) (118’) 

< 1.16 for PB ( r  = 5) (119’) 

From Figure 2 and discussion above it appears that Im and 

N*,(d) 

gh will be close, especially in the ML, case, Le. 

g = I, h = m, Im i= gh (74’) 
which is similar to the relations (74) [see also ref 34bl. 

So, neglecting the complications connected with the sdZ2 
mixing (in particular, the M O  cpl (1 1) gives some additional 
contribution to Fd) of the opposite signs for ML5 and ML7), 
we obtain the following approximate ranges: 

for TB ML5 do-d4 fld) = 1.5 (1 20) 

for PB ML7 do-d4 fid) = 1.2 (121) 

Thus, in the ML5 do-d4 complexes the d contribution is of the 
same sign as that of the s and p contribution, so axial bonds 
must be weaker than equatorial ones. 

Unfortunately, the known structural (electron diffraction) 
data30 are not accurate enough to determine the difference in 
axial and equatorial bonds, though this difference can reach 
0.1 a rather large value even compared to the AL5 D3h 
complexes (cf. Table 11). But our conclusion agrees with the 
results of quantitative  calculation^^^^^^^^^^^ (cf. also Table IV). 

In the ML5 D3h d8 cases the vacant hybrid orbital (51.3) 
is entirely antibonding, the coefficient c3’ before the px orbital 
being much larger than g3’ before the dXz+ orbitals9 Thus the 
dX2_y2 (d,) contribution to fld) may be neglected, but f l p )  
changes insignificantly. So, taking into account only the ( n  
- l)d,2 contribution to fid), we obtain, from (1 10) and (1 lo’), 
the approximate range 

for TB ML5 d8 7fd) = 0.25-0.33 (120’) 

This drastic decrease in Fd) can result in the relative 
strengthening of axial bonds.52 Actually, in all of the known 
TB ML5 d8 complexes, axial bonds are either the same [e.g., 
Pt(SnC13)53-] or shorter (see ref 9 and references therein). 
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On the contrary, in ML7 DSh PB complexes (the d0-d4 case) 
the d contribution is of the opposite sign as that of the s and 
p contribution, so we can expect, as a rule, substantial 
equalizing of all the bonds. Actually, in all known ML7 D5h 
complexes the differences in bond lengths are insignificant 
(Table 111). 

The opposing contributions are clearly reflected in calcu- 
lations on a typical complex do-d4 ML7 Dshlo where overlap 
populations of the M-Lax and M-L, bonds differ hardly at  
all (0.55 and 0.52, respectively). The small differences in total 
energies of different polyhedra ML710 and a suggestion of the 
d-orbital contribution of Re atom as the main reason for a 
substantial difference in the hardness of D5h polyhedra ReF, 
vs. also agree with our results. 

Our estimates for the fix) ranges are summarized in Table 
IV and compared with published calculations. Agreement 
among them is quite satisfactory.34b 

4. Relative Stability of Axial and Equatorial Isomers. 
Nonequivalency of axial and equatorial positions in EL5 TB 
and EL7 PB complexes raises the question of which positions 
should be preferable upon substitution of a ligand L by a given 
ligand L’. For clarity let us accept that L’ is a stronger donor 
ligand than L, i.e. 

( u L J I H ~ u L ~ )  - ( aLIHlaL) = 6a’ > 0 (122) 

and consider this change in the diagonal matrix element as 
a perturbation. To determine which isomer-axial or 
equatorial-should be more stable we have to find the dif- 
ference in total energies of the two isomers 

occ OCC 

AE’ax-eq = E B x  - E’eq = 2(Ee’l,ax - CE’1,eq) (123) 
I 1 

Thus, AEBx-eq > 0 (<O) means that the equatorial (axial) 
isomer is more stable which corresponds to a relatively stronger 
equatorial (axial) bond. If we take for all the MO’s the form 
(55) and for their energies the form (41), we obtain to first 
order46 

6€; = c21L.6ff‘ (124) 
and the total perturbation energy of each isomer may be 
written as 

OCC OCC 

6E‘ = 2x66,‘ = ~ ~ c ~ ~ L & Y ‘  (125) 
I I 

Therefore the energy difference (123) may be rewritten as 

Since 6a’ > 0 (122), E’> 0 (<O) again corresponds to the 
more stable equatorial (axial) isomer. 

To obtain the energy (125) to first order we can use un- 
perturbed MO’s (46)-(50) of the EL, complex. For our 
purpose we can accept c = e and d = f (74) and g = 1 and 
h = m (74’). In non-transition-element complexes the relations 
among the coefficients will be 

h >>f> b (127) 
and we can neglect small nd admixtures, simply assuming h 
= 1 and g = 0. In AL, cases there is no sd,z mixing and the 
s contribution will be considered to be isotropic. 

In transition-metal complexes the situation is more com- 
plicated. First, in the inequality 

f > > b > h  (128) 
we can neglect no coefficients. Second, sdZ2 mixing forces us 
to check the results of both orthogonalization schemes for the 
al’ group ligand orbitals. Thus, for ML, complexes we shall 
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give two values of E‘(126), for MO’s ( l l ) ,  (12) and (14), (15), 
which we shall name E’(s) and E’(d,z), respectively. Third, 
in the ML5 TB case we have to take into account pXdXz_,z 
(p,d.+,) mixing, Le., to consider the MO’s (51.1) and the 
relationship (52) where 

hi’ < h (1 29) 

h < f < q < l  (130) 

but 

With all this we obtain the following expressions for E’. 
(a) The TB EL5 Case. 

(1) AL5 ndo 

E’= y3(l - f2) = e2/3 > 0 (131) 
This result illustrates the well-known Muetterties rule20 

concerning the preference for equatorial substitution by 
stronger donor ligands. Moreover, from (1 3 1) and (126) we 
can predict that this preference will increase as the difference 
in electronegativities of L and L’ increases (ba’ increases) and 
the difference in electronegativities of A and L decreases (e 
increases); i.e., for a given L the donor ability of A decreases. 
Unfortunately, there is no relevant experimental data. 
(2) ML5 ( n  - l)do-d4 

E’(s) = f 2  - h2 > 0 (1 32) 
E’(d,z) = f 2  - 7/33b2 - 26/33h2 > 0 (1 32’) 

Equatorial substitution is always preferable which reflects the 
fact that all the p) > 1. 
(3) MLj ( n  - l)d* 

E’(s) = f 2  + y3h2 - y33a2 < 0 (133) 

(133’) E’(d,z) = f 2  - 7/33b2 + 6/11h2 -4/3v2 < 0 

Axial substitution is always preferable. 

(4) MLj (n - 1)d” 

E’(s) = f + y3 - y3q2 < or > O (134) 

E’(d,z) = f2 + Yl1 - Y3q2 < or > 0 (134’) 

This uncertainty in the signs of E’ reflects the fact that 
equatorial bonds may be stronger or weaker than axial bonds 
depending upon the values of the coefficients f and 7 [cf. the 
inequality (1 04)]. 

(b) The Oh EL6 Case. For any d” configuration and any 
central atom (A or M) we have the trivial identity 

E’(s) = E’(dZz) = 0 (135) 
For example, in the ML6 do case 

Evgeny Shustorovich 

E’(dZz) = f 2 / 5  -b 9/130b2 - ‘)/65h2 < or > 0 (137’) 

This case is the only one where the site preference depends 
on the details of sdzz mixing because fl) < 1 and 0.9 < PP) 
< 1 (87), but Pd) = 1.2 (121). 

All the above results are summarized in Table V. 
The site preference expressed in terms of the bond or total 

energy differences E’ (126) exactly corresponds to that in terms 
of bond polarities. In an unsubstituted complex EL, the 
effective charges of the axial ligand L, (4 ’ )  and equatorial 
ligand L3 (q3) will be 

occ 
q1 = 1 - 2CC2il 

q3 = 1 - 2Cc2,3 

(138) 

(139) 

i 

W C  

i 

where Cik stands for the coefficient of the C7k orbital in the 
occupied LCAO MO Therefore the difference in effective 
charges of the axial L, and equatorial L3 ligands will be equal 
to the negative of E’ (126), namely 

(c) The PB EL7 Case. 
(1) AL7 ndo 

E’ = y5U2 - 1) = -e2/5 < 0 (136) 
This result is quite opposite to that in the AL5 case (131). The 
relevant interpretation is analagous to that given for the AL5 
series (see above) if we replace the word “donor” by 
“acceptor”. 
(2) M L ~  ( n  - i)do-d4 

E’(s) = f 2 / 5  - h2/5 > 0 (137) 

Consequently, q < 0 (>O) means not only that the axial 
(equatorial) ligand is more electronegative but also that the 
equatorial (axial) bond is stronger. This relation easily explains 
why site preferences may be predicted in terms of bond polarity 
as is usually donee4’ 

Caution must be exercised, however. It is obvious that the 
equation (140) can hold only as long as a bond strength is 
defined by its covalency. With significant Madelung cor- 
rections, as in the case of strongly polar hypervalent main- 
group complexes, the correspondence between bond polarity 
and bond strength may not be clear at all.48 In addition, we 
want to stress that the two criteria only need coincide when 
the s, p, and d contributions to the relative bond strength are 
of the same sign, as in the TB ALs, ML5 do-d4, or PB AL7 
cases. Otherwise the two criteria may lead to different 
conclusions. 

A perfect example exists in the PB ML, do-d4 complexes 
where fi) < 1, PF’) < 1, but fld) > 1. Quantitative calcu- 
lations have shown’O that less polar equatorial bonds have 
smaller overlap population than more polar axial bonds. 
According to the bond strength criterion, a stronger donor 
ligand L’ should prefer the axial position, but, according to 
the bond polarity criterion, the equatorial position. In principle 
the first criterion is more general because it reflects the relative 
thermodynamic stability of the isomers. The second criterion 
may dominate in the kinetics of the substitution reaction but, 
if there are no serious obstacles to interligand exchange, Le., 
the interconversion barrier is not very high, the more stable 
isomer must be formed. While in both known examples of 
substituted ML7 c ~ m p l e x e s - - - O s H ~ ( P R ~ ) ~ ~ ~  and hH5- 
(PR3)250-the stronger donor ligand, hydrogen, occupies 
equatorial positions (in agreement with the bond polarity 
criterioni0) this may just be a result of steric repulsion of the 
bulky PR3 ligands. Future experimental and computational 
data should answer this new question: which of the two criteria 
is more general? 
Conclusion 

We see that our analytical LCAO MO approach allows the 
separate s, p, and d contributions to relative bond strengths 
to be obtained in explicit form. In particular, our approach 
is able to take into account the anisotropy of the s contribution 
and to estimate some effects of sdZz and pxd,z-9 (p,d,,! mixing 
(which other qualitative models failed to do). The main results 
of our work are given in Tables 1V and V. We see that the 
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Table VI. Values of HlZa> 
n 

comolex 1 2 3 

1.207 0.750 0.479 
-0.134 -0.254 -0.341 

EL, 
EL, 

See the  expression (92) for EL, and (94) for  EL,. All the 
values ofH, ,  have to be  multiplied by  [(r + 2)/(2r)1’2]R-”, where 
R is the E-L bond length. 

Table VII. Parameters Employed in EHM Calculations 

atom orbital -Hii, eV Slater exponent 

A 3s 20.0 1.83 
3P 11.0 1.83 

H 1s 13.6 1.30 
L 3s 15.0 1.30 

Table VIII. Overlap Populations N,,(X) and N,,(x) in TB AL, 

Y 3s 3a 3s + 30 (total) 

N,,(X) 0.134 0.220 0.3 54 
Na,(X) 0.117 0.195 0.312 
T(X) 1.14a 1.13b 1.13 

a Cf. the inequality (92’). Cf. the  inequality (86). 

ns and np contributions in TB ELS complexes are always 
opposite to those in PB EL, complexes. Further, in the TB 
ML, case the (n - l )d  contribution can greatly strengthen 
those of ns and np, but in the PB ML7 case the (n - l )d  
contribution always opposes those of ns and np. Our results 
agree with the known experimental and computational trends. 
Moreover, a number of results have been obtained for the first 
time, for instance the explanation of axial strengthening in 
CdClS3- and HgClS3-, the prediction of possible axial weak- 
ening in AL,*- complexes, and the prediction of the relative 
stability of isomers in the AL, series depending on the nature 
of A and L. 
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Appendix 

Table VI illustrates different signs of the s contributions to 
the relative axial and equatorial bond strengths in EL, and 
EL7 complexes. 

In order to illustrate some model conclusions we performed 
EHM49 calculations on TB complexes ALS and AL4H. The 
parameters employed are given in Table VII. 

The central atom A is considered to be a typical atom of 
the third period; the ligand L some 3s u ligand of the C1 type; 
for ligand H the standard parameters have been taken.9,s1 The 
internuclear distances are R(A-La,) = R(A-L,) = 2.05 A 
and R(A-H) = 1.35 A. For off-diagonal matrix elements the 
relationship Hll = 1.75S,l(H1, + H,,) has been used. 

The overlap populations in AL, are given in Table VIII. 
The la l ’  and 2al‘ MO’s are found to be 

$(lal’) = 0.61s + 0.243(ul + u2) + 0.23,(u3 + u4 + us) 

$(2al’) = 0.02s - 0.58(ul + uz) + 0.38(u3 + u4 + us) 

i.e., in the lal’ all the coefficients before bk are approximately 

(141) 

(1 42) 
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the same [cf. the relationship (1 l)], the nodal structure of the 
2al’ corresponds to s - u,, + uq [cf. the relationship (97)] and 
the ratio of the axial and equatorial coefficients -0.58:0.38 
= -1.52 is almost equal to the “unperturbed” value -1.50 [cf. 
the relationship (99) ] .  Finally, the difference in total energy 
E’of axial (C3J and equatorial (C,) isomers AL4H is positive 
and equal to 0.45 eV [cf. the relationship (1 3 1) from which 
AE’= 0.17 eV]. Finally, the difference in total energy E’of 
axial (C3”) and equatorial (C,) isomers AL4H is positive and 
equal to 0.45 eV [cf. the relationship (131) from which AE’ 
= 0.17 eV]. 
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Four new mononuclear ruthenium(I1) complexes, [Ru(PTP1),l2+ (PTPI = 2-p-tolylpyridinecarboxaldimine) and [Ru(bpy),BI2+ 
[B = 2,9-dimethyl- 1 ,lo-phenanthroline (2,9-Me2phen), 4,4’-dimethyL2,2’-bipyrirnidine (4,4’-Me2bpyrm), and 2,2’-biimidazole 
(biimH,)], have been prepared as PFL salts and their electrochemical and photoemission properties investigated in solution. 
In  addition, the ligand-bridged binuclear species [R~(bpy)~(B)Ru(bpy)~](PF,), (B = bpyrm and 4,4’-Mezbpyrm) have 
also been obtained as  by-products in the synthesis of the mononuclear complexes and separated from their mononuclear 
analogues by Sephadex chromatography. The mononuclear compounds all exhibit polarograms in acetonitrile consistent 
with quasi-reversible, one-electron [Ru(II) - Ru(III)]  oxidation processes with Ell2 potentials (SCE) ranging from 0.93 
to  1.29 V. The E,,, potentials suggest an  ordering in the B ligand ?r-acceptor ability of biimH2 << 2,9-Me2phen - bpy 
< 4,4’-Me2bpyrm < bpyrm. The  binuclear [Ru(II),Ru(II)] complexes possess polarograms displaying two, one-electron 
oxidation processes (Mi/, = 0.1 8 V) corresponding to production of the mixed-valence [ (Ru(II),Ru(III)] and fully oxidized 
[Ru(III),Ru(III)] species. At  roam temperature and in acetonitrile, the mononuclear B = 2,9-Me2phen, bpyrm, 4,4’-Me2bpyrm, 
and biimH, complexes have d r *  absorption and luminescence spectra similar to  that of [ R ~ ( b p y ) ~ ] , + ,  with emission bands 
occurring between 588 and 600 nm in all cases. Under similar conditions, the bipyrimidine-bridged binuclear complexes 
do not exhibit emission spectra in the 350-800-nm region. The emission spectrum observed for the [ R U ( P T P I ) ~ ] ~ +  complex 
is probably not of dn*  origin, with the emission bands being blue shifted (at -345 and 400 nm) relative to the 496- and 
552-nm dn* absorption bands. 

Introduction 
The synthesis of [Ru(bpy),]X2.nH20 by Burstal12 (bpy = 

2,2’-bipyridine) in 1936 led to little interest in the complex 
until 1959 when Paris and Brandt3 discovered its visible-region 
luminescence a t  77 K. After further inquiries mainly by 
Crosby and c o - ~ o r k e r s , ~ - ~  a large amount of evidence ac- 
cumulated from luminescence lifetime studies of [ R ~ ( b p y ) ~ ] ~ ’  
and related complexes that strongly supported a da* 5,73 
heavy-atom p e r t ~ r b e d , ~  spin-forbidden process as the basis for 
the observed phenomenon. This suggests an analogy to the 
more familiar spin-forbidden organic phosphorescence phe- 

nomena where the electronic decay is from a triplet excited 
state to the singlet ground state. For the [ R ~ ( b p y ) ~ ] ~ ’  case, 
however, there exist four emitting states, and spin labels on 
these states have recently been abandoned because of the large 
spin-orbit coupling expected for the formally d5 metal center 
of the da* excited states.l0 Further, it has been proposed that 
(1) metal-ligand dx* charge transfer must be at lower energy 
than dd* ligand field or AT* ligand antibonding states,” (2) 
the ground-state complex must be diamagnetic,” and (3) the 
metal ion d electrons in the dx* excited state must also be as 
“paired” as po~sible.’~J~ These conditions apparently constitute 
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